P.R.GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA I B.Sc. - MATHEMATICS - SEMESTER II (w.e.f. 2017-2018)

Course: SOLID GEOMETRY

Total Hrs. of Teaching-Learning: 90 @ 6 h / Week

Total Credits: 05

Objective:

To get awareness about the three dimensional geometry along with visualization.

To be able to apply 3-D geometry for the construction.

Unit I: The Plane

Equation of plane in terms of its intercepts on the axes, Equation of the plane through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a

927914 Unit II: The Straight Line

(18 h)

Equation of a line, Angle between a line and a plane, the condition that a given line may lie in a given plane, the condition that the given lines are coplanar, Number of arbitrary constants in the equations of straight line, sets of conditions which determine a line, The shortest distance between two lines, the length and equations of the line of shortest distance between two straight lines, length of the perpendicular from a given point to a given line.

Unit III: The Sphere

Equation of the sphere, Plane section of a sphere, Intersection of two spheres, Equation of a circle, Sphere through a given circle, Intersection of a sphere and a line, Tangent lines and tangent planes, Plane of contact, Polar plane, conjugate points, Conjugate planes.

Unit IV: The Sphere and the Cone

(18h)

Angle of intersection of two spheres, Condition for two spheres to be orthogonal, Radical plane, Coaxial system of spheres, Simplified form of the equation of two spheres.

Definition of a cone, Vertex, Guiding curve, generators, Equation of the cone with a given vertex and guiding curve, Equation of cone with vertex at origin is homogeneous, Condition that the general equation of the second degree should represent a cone.

Unit V: The Cone

Enveloping cone of a sphere, Right Circular Cone, Conditions that a cone may have three mutually perpendicular generators, Intersection of a line and quadric cone, Tangent lines and tangent plane at a point, Condition that a plane may touch a cone, Reciprocal cones, Intersection of two cones with a common vertex.

Additional Inputs:

1. Intersection of three planes, Triangular prism.

The right circular cylinder.

Prescribed Book:

Scope as in "A text book of Mathematics for B.Sc. volume I" by V. Krishna Murthy & others, S.Chand and Company Ltd.

Reference Books:

- Analytical Solid Geometry by Shanti Narayan and P. K. Mittal, Published by S. Chand & Company Ltd., Seventh Edition.
- A text book of Analytical Geometry of Three Dimensions by P. K. Jain and Khaleel Ahmed, Wiley Eastern Ltd., 1999.
- 3. Course on Solid Geometry by N. P. Bali Golden series publications.

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-II

Unit	TOPIC	V.S.A.Q	S.A.Q	E.Q	Marks allotted to the Unit
1	The Plane	1	1	2	22
11	The Right Line	1	1	2	22
ш	The Sphere	1	1	1	14
IV	The Sphere & The Cone	1	1	2	22
V	The Cone	1	1	1	14
TOTAL		5	5	8	94

V. S. A. Q. = Very short answer questions (1 mark)

S. A. Q. = Short answer questions (5 marks)

E.Q. = Essay questions (8 marks)

Very short answer questions: $5 \times 1 = 05$

Short answer questions $: 3 \times 5 = 15$

Essay questions $: 5 \times 8 = 40$

Total Marks = 60

. . .

P.R. Government College (Autonomous), Kakinada I year B.Sc., Degree Examinations - II Semester Mathematics Course: Solid Geometry Paper II (Model Paper w.e.f. 2017 - 2018)

Time: 2Hrs 30 min

Max. Marks: 60

PART-I

Answer ALL the questions. Each question carries 1 mark.

5X1=5M

- 1. Find the equation of the plane through the line of intersection of x 3y + 2z + 3 = 0, 3x y 2z 5 = 0 and the origin.
- 2. Find the equation of the line passing through (4, 3, -7) and equally inclined to the axes.
- 3. Find the centre of the sphere $x^2 + y^2 + z^2 3x + 5y 4z 3 = 0$.
- 4. Find the polar plane of the point (0, -1, 1) with respect to the sphere $x^2 + y^2 + z^2 2x + 4y + 6z 11 = 0$.
- 5. Write the reciprocal cone of $9x^2 + 4y^2 7z^2 = 0$.

PART-II

Answer any THREE questions. Each question carries 5 marks.

 $3 \times 5 = 15 M$

- 6. Find the equation of the plane through the point (-1, 3, 2) and perpendicular to the two planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
- 7. Find the image of the point A(1,3,4) in the plane 2x y + z + 3 = 0.
- 8. Find the equation of the sphere through the origin and making intercepts a, b, c with the axes.
- 9. If r_1 and r_2 are the radii of the orthogonal spheres, then find the radius of the circle of their intersection.
- 10. Find the equation of the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x 2y = 2$, with its vertex at (1, 1, 1).

PART-III

Answer any <u>FIVE</u> questions from the following by choosing at least <u>TWO</u> from each section. Each question carries 8 marks. $5 \times 8 = 40 \text{ M}$

SECTION-A

- 11. Find the planes bisecting the angles between the planes 2x y + 2z + 3 = 0 and 3x 2y + 6z + 8 = 0. Point out which of the planes bisects the acute angle and which bisects the obtuse angle in which the origin lies.
 - 12. Show that the equation $x^2 + 4y^2 + 9z^2 12yz 6zx + 4xy + 5x + 10y 15z + 6 = 0$ represents a pair of parallel planes and find the distance between them.
 - 13. Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also find their point of intersection and the plane containing the lines.
 - 14. Find the length and equations of the line of shortest distance between the lines $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$.

SECTION -B

- 15. Show that the four points (-8, 5, 2), (-5, 2, 2), (-7, 6, 6), (-4, 3, 6) are concyclic.
- 16. Find the equation of the sphere which touches the plane 3x + 2y z + 2 = 0 at (1, -2, 1) and cuts orthogonally the sphere $x^2 + y^2 + z^2 4x + 6y + 4 = 0$.
- 17. Prove that the plane ax + by + cz = 0 cuts the cone yz + zx + xy = 0 in a perpendicular lines if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.
- 18. Find the equation to the right circular cone whose vertex in P(2, -3, 5) axis PQ which makes equal angles with the axis and which passes through (1, -2, 3).
